Early-split coding of triangle mesh connectivity

نویسندگان

  • Martin Isenburg
  • Jack Snoeyink
چکیده

The two main schemes for coding triangle mesh connectivity traverse a mesh with similar region-growing operations. Rossignac’s Edgebreaker uses triangle labels to encode the traversal whereas the coder of Touma and Gotsman uses vertex degrees. Although both schemes are guided by the same spiraling spanning tree, they process triangles in a different order, making it difficult to understand their similarities and to explain their varying compression success. We describe a coding scheme that can operate like a label-based coder similar to Edgebreaker or like a degree-based coder similar to the TG coder. In either mode our coder processes vertices and triangles in the same order by performing the so-called “split operations” earlier than previous schemes. The main insights offered by this unified view are (a) that compression rates depend mainly on the choice of decoding strategy and less on whether labels or degrees are used and (b) how to do degree coding without storing “split” offsets. Furthermore we describe a new heuristic that allows the TG coder’s bit-rates to drop below the vertex degree entropy. CR Categories: I.3.5 [Computational Geometry and Object Modeling]: Boundary representations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Face-Based Non-Split Connectivity Compression for Quad and Triangle-Quad Meshes

In this paper we present an efficient face-based connectivity coding technique for the special class of quadrilateral and the hybrid triangular-quadrilateral meshes. This work extends the main ideas of non-split encoding presented by the first contribution of the authors (Khattab, Abd El-Latif, Abdel Wahab and Tolba, 2007) for triangle meshes and improves over the compression results provided s...

متن کامل

Distance-Ranked Connectivity Compression of Triangle Meshes

We present a new, single-rate method for compressing the connectivity information of a connected 2-manifold triangle mesh with or without boundary. Traditional compression schemes interleave geometry and connectivity coding, and are thus typically unable to utilise information from vertices (mesh regions) they have not yet processed. With the advent of competitive point cloud compression scheme...

متن کامل

Efficient Coding of Non-Triangular Mesh Connectivity

We describe an efficient algorithm for coding the connectivity information of general polygon meshes. In contrast to most existing algorithms which are suitable only for triangular meshes, and pay a penalty for treatment of nontriangular faces, this algorithm codes the connectivity information in a direct manner. Our treatment of the special case of triangular meshes is shown to be equivalent t...

متن کامل

Fully Embedded Coding of Triangle Meshes

An algorithm for triangle mesh compression is presented. Any mesh topology can be coded. Vertex coordinates and mesh connectivity are simultaneously coded with increasing level-ofdetail. The bit stream can be sequentially decoded and vertex accuracy and mesh resolution gradually re ned. The embedded code allows progressive transmission of triangle meshes and continuous decoding of 3D geometry. ...

متن کامل

Subdivision Tree Representation of Arbitrary Triangle Meshes

We investigate a new way to represent arbitrary triangle meshes. We prove that a large class of triangle meshes, called normal triangle meshes, can be represented by a subdivision tree, where each subdivision is one of four elementary subdivision types. We also show how to partition an arbitrary triangle mesh into a small set of normal meshes. The subdivision tree representation can be used to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006